New results on variants of covering codes in Sierpiński graphs
نویسندگان
چکیده
In this paper we study identifying codes, locating-dominating codes, and total-dominating codes in Sierpiński graphs. We compute the minimum size of such codes in Sierpiński graphs.
منابع مشابه
A survey and classification of Sierpiński-type graphs
The purpose of this survey is to bring some order into the growing literature on a type of graphs which emerged in the past couple of decades under a wealth of names and in various disguises in different fields of mathematics and its applications. The central role is played by Sierpiński graphs, but we will also shed some light on variants of these graphs and in particular propose their classif...
متن کاملCovering codes in Sierpinski graphs
For a graph G and integers a and b, an (a, b)-code of G is a set C of vertices such that any vertex from C has exactly a neighbors in C and any vertex not in C has exactly b neighbors in C. In this paper we classify integers a and b for which there exists (a, b)-codes in Sierpiński graphs.
متن کاملGeneralized Sierpiński graphs
Sierpiński graphs, S(n, k), were defined originally in 1997 by Klavžar and Milutinović. The graph S(1, k) is simply the complete graph Kk and S(n, 3) are the graphs of Tower of Hanoi problem. We generalize the notion of Sierpiński graphs, replacing the complete graph appearing in the case S(1, k) with any graph. The newly introduced notion of generalized Sierpiński graphs can be seen as a crite...
متن کاملCodes and L(2, 1)-labelings in Sierpiński Graphs
The λ-number of a graph G is the minimum value λ such that G admits a labeling with labels from {0, 1, . . . , λ} where vertices at distance two get different labels and adjacent vertices get labels that are at least two apart. Sierpiński graphs S(n, k) generalize the Tower of Hanoi graphs—the graph S(n, 3) is isomorphic to the graph of the Tower of Hanoi with n disks. It is proved that for any...
متن کاملA family of binary completely transitive codes and distance-transitive graphs
In this paper we construct new family of binary linear completely transitive (and, therefore, completely regular) codes. The covering radius of these codes is growing with the length of the code. In particular, for any integer ρ ≥ 2, there exist two codes in the constructed class of codes with d = 3, covering radius ρ and length ( 4 ρ 2 ) and ( 4 ρ+2 2 ) , respectively. These new completely tra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Des. Codes Cryptography
دوره 69 شماره
صفحات -
تاریخ انتشار 2013